Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.769
Filtrar
1.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600111

RESUMO

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Oxirredução , Ferro , Metano/metabolismo , Minerais
2.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656670

RESUMO

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Assuntos
Ração Animal , Lactação , Metano , Leite , Animais , Bovinos/fisiologia , Metano/análise , Metano/metabolismo , Feminino , Lactação/fisiologia , Leite/química , Leite/metabolismo , Ração Animal/análise , Dieta/veterinária , Criação de Animais Domésticos/métodos , Silagem/análise , Fenômenos Fisiológicos da Nutrição Animal , Brachiaria , Nitrogênio/metabolismo , Nitrogênio/análise , Nutrientes/análise , Nutrientes/metabolismo , Fabaceae/química
3.
J Hazard Mater ; 470: 134124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565020

RESUMO

Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 µg/L and 124.0 ± 5.1 µg/L, respectively. ATBC at 124.0 µg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.


Assuntos
Metano , Microplásticos , Polietileno , Esgotos , Anaerobiose , Microplásticos/toxicidade , Hidrólise , Polietileno/toxicidade , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Temperatura Alta , Poluentes Químicos da Água/toxicidade , Reatores Biológicos
4.
Arch Microbiol ; 206(5): 234, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664262

RESUMO

Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.


Assuntos
Archaea , Carvão Mineral , Metano , Metano/metabolismo , Archaea/metabolismo , Archaea/genética , Ecossistema , Filogenia
5.
Nat Commun ; 15(1): 3471, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658559

RESUMO

Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.


Assuntos
Desnitrificação , Metano , Oryza , Oxirredução , Microbiologia do Solo , Solo , Metano/metabolismo , Oryza/metabolismo , Oryza/microbiologia , China , Solo/química , Aerobiose , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Óxido Nitroso/metabolismo , Filogenia , Isótopos de Carbono/metabolismo , Metagenoma
6.
Environ Sci Technol ; 58(15): 6575-6585, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564483

RESUMO

Wide-area aerial methods provide comprehensive screening of methane emissions from oil and gas (O & G) facilities in production basins. Emission detections ("plumes") from these studies are also frequently scaled to the basin level, but little is known regarding the uncertainties during scaling. This study analyzed an aircraft field study in the Denver-Julesburg basin to quantify how often plumes identified maintenance events, using a geospatial inventory of 12,629 O & G facilities. Study partners (7 midstream and production operators) provided the timing and location of 5910 maintenance events during the 6 week study period. Results indicated three substantial uncertainties with potential bias that were unaddressed in prior studies. First, plumes often detect maintenance events, which are large, short-duration, and poorly estimated by aircraft methods: 9.2 to 46% (38 to 52%) of plumes on production were likely known maintenance events. Second, plumes on midstream facilities were both infrequent and unpredictable, calling into question whether these estimates were representative of midstream emissions. Finally, 4 plumes attributed to O & G (19% of emissions detected by aircraft) were not aligned with any O & G location, indicating that the emissions had drifted downwind of some source. It is unclear how accurately aircraft methods estimate this type of plume; in this study, it had material impact on emission estimates. While aircraft surveys remain a powerful tool for identifying methane emissions on O & G facilities, this study indicates that additional data inputs, e.g., detailed GIS data, a more nuanced analysis of emission persistence and frequency, and improved sampling strategies are required to accurately scale plume estimates to basin emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Aeronaves , Metano/análise , Gás Natural/análise
7.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569960

RESUMO

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Oryza/metabolismo , Agricultura/métodos , Aquecimento Global , Produção Agrícola , Óxido Nitroso/análise , Metano/análise , Solo , China
8.
Medicine (Baltimore) ; 103(15): e37580, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608057

RESUMO

In this research, it was aimed to evaluate effects of methane emissions on multiple myeloma related mortality rates. Two countries in Europe (Germany and Netherlands) and 1 country for each region (Turkey, USA, Brazil, Egypt, and Australia) were selected within The World Health Organization Database. Multiple myeloma mortality rates of countries between 2009 and 2019 were used as dependent variable of the research. Methane emission level and agriculture methane levels of countries were used as independent variables from The World Bank Database. Current health expenditure and healthy life expectancy were used as controlling variables. Multiple myeloma-related mortality rate was the highest in the USA, followed by Germany, Brazil, Turkey, Australia, Netherlands, and Egypt. Difference analysis results were significant (P < .05). Methane and agriculture methane emissions were the highest in the USA. Multiple myeloma mortality was positively correlated with methane emissions (R = 0.504; P < .01), agricultural methane emissions (R = 0.705; P < .01), and current health expenditure (R = 0.528; P < .01). According to year and country controlled correlation analysis results, multiple myeloma mortality (MMM) was positively correlated with methane emissions (R = 0.889; P < .01), agricultural methane emissions (R = 0.495; P < .01), and current health expenditure (R = 0.704; P < .01). Methane emission (B = 0.01; P < .05), Germany (B = 9010.81; P < .01), the USA (B = 26516.77; P < .01), and Brazil (B = 4886.14; P < .01) had significant effect on MMM. Nonagricultural methane production has an increasing effect on MMM. Therefore, by looking at the differences between agricultural methane emissions and general methane emissions, studies can be conducted that allow for more effective global comparisons.


Assuntos
Mieloma Múltiplo , Humanos , Europa (Continente) , Agricultura , Metano , Organização Mundial da Saúde
9.
Sci Rep ; 14(1): 8656, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622318

RESUMO

The adaptation of biochar in anaerobic digestion (AD) positively influences the conversion of substrate to biomethane and promotes system stability. This study investigated the influence of biochar (BC) doses (0 to 8 g/L) on the Biochemical Methane Potential (BMP) of glucose during a 60-day AD in a mesophilic batch-type reactor. The first 6.5 weeks of the experimentation were dedicated to the microorganism's adaptation to the biochar and degradation of organics from the used inoculum (3 phases of the glucose feeding). The last 2 weeks (4th phase of glucose feeding) represented the assumption, that glucose is the sole carbon source in the system. A machine learning model based on the autoregressive integrated moving average (ARIMA) method was used to model the cumulative BMP. The results showed that the BMP increased with the amount of BC added. The highest BMP was obtained at a dose of 8 g/L, with a maximum cumulative BMP of 390.33 mL CH4/g-VS added. Likewise, the system showed stability in the pH (7.17 to 8.17). In contrast, non-amended reactors produced only 135.06 mL CH4/g-VS and became acidic at the end of the operation. Reducing the influence of carbon from inoculum, sharpened the positive effect of BC on the kinetics of biomethane production from glucose.


Assuntos
Reatores Biológicos , Carbono , Anaerobiose , Carvão Vegetal , Metano
10.
Animal ; 18(4): 101134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593679

RESUMO

Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.


Assuntos
Plantas Medicinais , Animais , Plantas Medicinais/metabolismo , Metano/metabolismo , Ruminantes/metabolismo , Fermentação , Rúmen/metabolismo
11.
Water Environ Res ; 96(4): e11014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38636991

RESUMO

In this study, the characteristics, anaerobic treatability, and energy potential of wastewater samples taken from a dairy products industry were investigated. It was determined that the wastewater has a high organic load (COD = 2800 mg O2/L) and a large proportion of this load is biodegradable. The biochemical methane potential (BMP) value of wastewater was measured as 1118.71 ± 122 ml CH4/L. Volatile solids (VS) removal of 67.25 ± 4.98% was achieved during batch tests and the obtained methane yield was calculated as 411.59 ± 22.8 ml CH4/g VS. Peak methane formation rate and lag time of microorganisms were determined as 163.42 ± 3.83 ml CH4/g VS d and 0.584 ± 0.023 d, respectively. Rate constant for the first-order kinetic model was 0.384 ± 0.072 d-1. The volatile fatty acid (VFA) yield was measured as 155.19 mg COD/g VSS. It was concluded that the wastewater can be treated anaerobically without any inhibition and it has great energy potential. PRACTITIONER POINTS: Dairy wastewater has a large organic load and that most of the organics can be easily biodegradable. Although there are many components considered to be toxic for anaerobic treatment in wastewater, they were found to be very under the inhibition thresholds and did not pose any risk of toxicity. At a satisfactory level, organic matter removal and methane formation were observed in batch anaerobic tests. A rapid microbial adaptation was achieved and the system reached equilibrium in a short time without any acid accumulation. The electrical and caloric energy potentials of the obtained methane gas were calculated as 2.12 and 4.25 kWh/m3, respectively.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Ácidos Graxos Voláteis , Metano , Eliminação de Resíduos Líquidos
12.
Chemosphere ; 355: 141831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561162

RESUMO

The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.


Assuntos
Lignina , Microbiota , Lignina/metabolismo , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Metano/metabolismo , Biocombustíveis
13.
Chemosphere ; 355: 141832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570044

RESUMO

Climate change and plastic pollution are likely the most relevant challenges for the environment in the 21st century. Developing cost-effective technologies for the bioconversion of methane (CH4) into polyhydroxyalkanoates (PHAs) could simultaneously mitigate CH4 emissions and boost the commercialization of biodegradable polymers. Despite the fact that the role of temperature, nitrogen deprivation, CH4:O2 ratio or micronutrients availability on the PHA accumulation capacity of methanotrophs has been carefully explored, there is still a need for optimization of the CH4-to-PHA bioconversion process prior to becoming a feasible platform in future biorefineries. In this study, the influence of different cultivation broth pH values (5.5, 7, 8.5 and 10) on bacterial biomass growth, CH4 bioconversion rate, PHA accumulation capacity and bacterial community structure was investigated in a stirred tank bioreactor under nitrogen deprivation conditions. Higher CH4 elimination rates were obtained at increasing pH, with a maximum value of 50.4 ± 2.7 g CH4·m-3·h-1 observed at pH 8.5. This was likely mediated by an increased ionic strength in the mineral medium, which enhanced the gas-liquid mass transfer. Interestingly, higher PHB accumulations were observed at decreasing pH, with the highest PHB contents recorded at a pH 5.5 (43.7 ± 3.4 %w·w-1). The strong selective pressure of low pH towards the growth of Type II methanotrophic bacteria could explain this finding. The genus Methylocystis increased its abundance from 34 % up to 85 and 90 % at pH 5.5 and 7, respectively. On the contrary, Methylocystis was less abundant in the community enriched at pH 8.5 (14 %). The accumulation of intracellular PHB as energy and carbon storage material allowed the maintenance of high CH4 biodegradation rates during 48 h after complete nitrogen deprivation. The results here obtained demonstrated for the first time a crucial and multifactorial role of pH on the bioconversion performance of CH4 into PHA.


Assuntos
Methylocystaceae , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Carbono/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
14.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570877

RESUMO

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Assuntos
Archaea , Metano , Archaea/genética , Marcação por Isótopo , Oxirredução , Metano/metabolismo , Carbono/metabolismo , DNA , Anaerobiose , Sedimentos Geológicos , Filogenia
15.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575972

RESUMO

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Assuntos
Galinhas , Plumas , Animais , Anaerobiose , Galinhas/metabolismo , Hidrogênio/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustíveis , Reatores Biológicos
16.
Sci Total Environ ; 927: 171994, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561130

RESUMO

Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.


Assuntos
Florestas , Aquecimento Global , Metano , Microbiologia do Solo , Solo , Metano/metabolismo , Metano/análise , Solo/química , Água , Temperatura
17.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646755

RESUMO

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Assuntos
Formigas , Florestas , Metano , Solo , Clima Tropical , Metano/análise , Metano/metabolismo , Animais , Solo/química , China , Microbiologia do Solo , Estações do Ano
18.
Huan Jing Ke Xue ; 45(5): 2741-2747, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629537

RESUMO

To evaluate the effect of thermal hydrolysis pretreatment time on the sludge anaerobic digestion system of wastewater treatment plants (WWTPs) in Daxing district, Beijing, the structure and diversity of microbial communities in primary sludge and an activated sludge anaerobic digestion system with different thermal hydrolysis pretreatment times (15 min, 30 min, and 45 min) were analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the dominant groups of digested sludge were mainly distributed in Firmicutes, Cloacimonadota, Chloroflexi, and Synergistota, with W5 being the most common genus. The sum of relative abundance of the dominant phylum was greater than 60%, and W5 accounted for 20.8%-54.5%, showing a high abundance of a few dominant species. During the anaerobic digestion of thermo-hydrolyzed sludge, the relative abundance of acetogenic methanogens decreased due to high levels of volatile fatty acids (VFAs) and ammonia nitrogen (NH4+-N) concentrations, which suggested that the hydrogenophilic methanogenic pathway was more than that of the acetogenic methanogenic pathway. Correlation analysis showed that the soluble protein and pH of thermo-hydrolyzed sludge, NH4+-N of digested sludge, and thermal hydrolysis pretreatment time were the four main environmental factors affecting microbial community structure, and NH4+-N of digested sludge had the largest negative correlation with methanogens. The thermal hydrolysis pretreatment time was negatively correlated with both the Chao index and Shannon index, so longer thermal hydrolysis pretreatment time was not conducive to microbial flora during anaerobic digestion.


Assuntos
Microbiota , Esgotos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano , Reatores Biológicos
19.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
20.
Nat Commun ; 15(1): 3300, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632227

RESUMO

Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.


Assuntos
Elétrons , Methanosarcina , Transporte de Elétrons , Methanosarcina/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...